Closing Thu:13.3(part 1),Closing Tue:13.3(part 2), 13.4Closing Next Thu:14.1, 14.3 (part 1)Midterm 1 will be returned Tuesday.And updated grades will be posted by the endof next week.

13.3 (part 2) TNB Frame

Today we define our last few 3D measurement tools.

First, the **normal plane** to $\vec{r}(t)$ at a point is the plane that goes through the point and is orthogonal to the curve.

Example: Find the normal plane at $t = \pi$ for $\vec{r}(t) = \langle 2\sin(3t), t, 2\cos(3t) \rangle$

(See visual from ebook) **Finding normal vectors (TNB-Frame)**: As we proved the other day in class, $\vec{T}'(t)$ is always orthogonal to $\vec{T}(t)$.

Not only is it orthogonal, it also points `inwardly' relative to whichever way you are curving.

If we make this inward pointing vector a unit vector, then we call it:

 $\overrightarrow{N}(t) = \frac{\overrightarrow{T}'(t)}{|\overrightarrow{T}'(t)|} = \text{principal unit normal}$ We also define

 $\vec{\mathbf{x}}$

 $\vec{B}(t) = \vec{T}(t) \times \vec{N}(t) = \text{binormal}$

Note that $\overrightarrow{B}(t)$ already has length one (why?).

Some TNB Facts:

- All have length one.
- Normal plane is parallel to $\vec{N}(t)$ and $\vec{B}(t)$ And is orthogonal to $\vec{T}(t)$ and $\vec{r}'(t)$.
- \$\vec{T}(t)\$ and \$\vec{N}(t)\$ point in the tangent and inward directions, respectively.
 They give a good approximation of the "plane of motion".
- This "plane of motion" that goes through a point on the curve and is parallel to \$\vec{T}(t)\$ and \$\vec{N}(t)\$ is called the "osculating plane" ("osculating" means "kissing")
- $\vec{T}(t)$, $\vec{N}(t)$, $\vec{r}'(t)$, and $\vec{r}''(t)$ are ALL parallel to the osculating plane.
- $\vec{B}(t)$ is orthogonal to the osculating plane, it is also orthogonal to ALL the vectors $\vec{T}(t), \vec{N}(t), \vec{r}'(t)$, and $\vec{r}''(t)$

Example:

 $\vec{r}(t) = \langle 2\sin(3t), t, 2\cos(3t) \rangle$

Find

- 1. $\overrightarrow{T}(\pi)$ 2. $\overrightarrow{N}(\pi)$
- 3. $\overrightarrow{\boldsymbol{B}}(\pi)$
- 4. Find the osculating plane at t = π

A `sneaky' old exam question: Consider the curve $\vec{r}(t) = \langle (t^2 - 2)^2, t^4, t^2 \rangle$

- a) Compute $\vec{T}(t)$ for general t.
- b) Show that the curve lies in the plane x-y+4z = 4.

c) Find one (non-zero) vector that is parallel to $\overrightarrow{B}(1)$.

Hint: Think about what b) means for the osculating plane and for the position of the vectors $\vec{T}(t)$, $\vec{N}(t)$, $\vec{B}(t)$. You can use those insights to solve c) and d) with very little calculations.

Summary of 3D Curve Measurement Tools:

Given $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$

 $\vec{\pmb{r}}'(t) =$ a tangent vector

$$s(t) = \int_0^t |\vec{r}'(t)| dt = \text{distance (arc length)}$$

$$K = \left| \frac{d\vec{T}}{ds} \right| = \frac{|\vec{r}' \times \vec{r}''|}{|\vec{r}'|^3} = \text{curvature}$$

$$\vec{T}(t) = \frac{\vec{r}'(t)}{|\vec{r}'(t)|} = \text{unit tangent}$$
$$\vec{N}(t) = \frac{\vec{T}'(t)}{|\vec{T}'(t)|} = \text{principal unit normal}$$
$$\vec{B}(t) = \vec{T}(t) \times \vec{N}(t) = \text{binormal}$$

Tangent Line:

Through curve in direction of tangent.

Normal Plane:

Through curve orthogonal to tangent. **Osculating Plane**:

Through curve parallel to $ec{r}'(t)$ and $ec{r}''(t)$